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ABSTRACT

We describe three methods of combating co-channel in-
terference (CCI) : across-coupled phase-locked loop (CC-
PLL); a phase-tracking circuit (PTC), and joint Viterbi
estimation based on the maximum likelihood principle. In
the case of co-channel FM-modulated voice signals, the
CCPLL and PTC methods typically outperform the max-
imum likelihood estimators when the modulation param-
eters are dissmilar. However, as the modulation param-
eters become identical, joint Viterbi estimation provides
for a more robust estimate of the co-channel signals and
does not suffer as much from “signal switching” which
especially plagues the CCPLL approach. Good perfor-
mance for the PTC requires both dissimilar modulation
parameters and a priori knowledge of the co-channel sig-
nal amplitudes. The CCPLL and joint Viterbi estimators,
on the other hand, incorporate accurate amplitude esti-
mates. In addition, application of the joint Viterbi algo-
rithm to demodulating co-channel digitd (BPSK) signas
in a multipath environment is also discussed. It is shown
in this case that if the interference is sufficiently smal, a
single trellis model is most effective in demodulating the

co-channel signals.

INTRODUCTION

Co-channel interference (CCI)can bea serious impair-
ment to any communication system. In this paper, we
first. focus on separating two CCIFM signals of the form

r(t) = Aycos(wit + 8((t)) + Az cos(wa t + 62(t)),
1)

where E),(t) =k; f_t\o m; (s)ds and m; () are the modulat-
ing signals. (Subsequently, we will consider the demodu-
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lation of co-channel digitally modulated (BPSK) signals
in the presence of multipath.) As evident from the model
described by Equation (1), each FM signal alone haa a
constant envelope and an instantaneous frequency which
is proportional to its modulating signal; on the other
hand, r{t) has a widely varying envelope and an instan-
taneous frequency which contains large spikes. A conven-
tional FM receiver containing a single PLL may be able
to correct for the varying envelope with the use of a hard
limiter, but the spikes will remain and ™1 (t), ma(t), and
mi(t) + m,(t) are each unrecoverable. |deally, ml(t) and
m,(t) are recovered separately, with no crosstalk between
the two.

There are several approaches to CCIl suppression which
are based on either linear or non-linear processing. Linear
processing methods encompass narrowband linear filter-
ing as well as adaptive filtering techniques which suppress
interference based on statistical differences between the
interference and desired signal components. Examples of
adaptive interference suppression filtering techniques in-
clude linear prediction error filtering as well as “blind’
adaptive processing wherein linear filter coefficients are
adjusted to enhance certain properties of the desired sig-
nal (thereby suppressing the interference).

Non-1 inear techniques are usualy based upon the “cap-
ture” effect wherein the strongest signal is enhanced by
some type of non-linearity at the expense of weaker sig-
nals which are suppressed. Since these techniques are de-
pendent on the relative amplitudes of the various signal
components, they can be utilized for separating multi-
ple components with highly overlapped spectra. Exam-
ples include the FM limiter /discriminator, PLL, PTC [3],
CCPLL{2.6}, and maximum likelihood (ML) -based tech-

niques [1.3].
CCPLL aNDp PTC METHODS

The CCPLL and PTC technigues fall within a class of
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Figure 1. CCPLL block diagram.

methods that exploit the capture property of the PLL to
separate co-channel signals. The CCPLL comprises two
PLLs: one used to capture the dominant signal and the
second to capture the sub-dominant (its architecture can
easily be extended to separate multiple signals). A simpli-
fied block diagram, based on the feed-forward, difference-
amplitude tracking topology developed in [7], is illus-
trated in Figure 1. We note that both PLLsS are second-
order, incorporating proportional plus integral control,
and both lowpass filters, used in generating the amplitude
estimates, are second-order digital Butterworth designs.

Although this method has been proposed for separat-
ing a wide variety of signals including CW, FM, AM
and even digital signas, eg., BFSK, we have found that
for cases of co-channel signals with comparable modula-
tion parameters the CCPLL becomes less effective. As
an illustrative example, consider the case of two synthe-
sized voice signals (approximately 3.7 kHz bandwidth)
that are FM-modulated. The parameters from Equa-
tion (1) are 4, = 1, 42 = 0.5, k; = k2 = 2n(12kHz),
and w; = w2 = O (i.e.,, baseband). Thus the weaker
(sub-dominant) signal is 6 dB below the dominant. The
signal was sampled at 131kHz. Using the CCPLL design
rules developed in [6], we obtain sample computer simu-
lation results as depicted in Figure 2 for a three second
segment. Both the origina and CC PLL-reconstructed es-
timates (demodulated by the PLLs) for the dominant and
sub-dominant synthesized voice waveforms are displayed.

Generally the CCPLL is able to separate the voice
waveforms reasonably well in this example. However,
close inspection of the various waveforms reveals certain
features that are captured either by the wrong PLL or by
both PLLs simultaneously. An example of thelatter is the
distinct pulse train occurring in the dominant waveform
( Figure 2(a)) at about the middle of the three second seg-
ment (between approximately 1.4and 1.5 seconds). T he
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(@ Dominant (original) speech signal.
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(b) CCPLL edtimate of dominant signal.
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() Sub-dominant (original) speech signal.

(d) CCPLL estimate of sub-dominant signal.

Figure 2: Performance of CCPLL estimator on FM voice
signas, each with frequency deviation of 12kHz.

dominant CCPLL estimate (Figure 2(b)) captures this
feature but unfortunately so does the sub-dominant (Fig-
ure 2(d)). Vice versa at the end of the segment (between
approximately 2.8 and 2.9 seconds) the amplitude burst
in the sub-dominant waveform (Figure 2(c)) is captured
only by the dominant CCPLL estimate.

This phenomenon of “signal switching” is created by
a number of factors including instantaneous frequency
crossing which causes the individual PLLs to lock onto
and track the wrong signals. This problem is less severe
as the occurrence of instantaneous frequency crossings is
reduced. This situation can be simulated using the same
synthesized voice waveforms considered above in Figure 2
but using different FM modulation parameters. For ex-
ample, if we increase the FM deviation frequency of the
sub-dominant from 12 kHz to 24 kHz (with al other mod-
ulation parameters the same) and correspondingly open
up the PLL bandwidths (again following the CCPLL de-
sign rules provided in [6]), we obtain much better voice
separation as seen in Figure 3.

Now the objectionable signal switching has been sig-
nificantly reduced. Of course in practice the presence of
instantaneous frequency crossings in the input co-channel
data cannot be controlled. Thus the utility of the CCPLL
will generally be limited unless some means of compensa
tion canbe developedto mitigate the deleterious effects
of instantancous frequency crossings. Possible methods
include theinclusion of Kalman tracking techniques that
will track previous PLL phase est imat es and use these
estimatesto prevent signal phase switching. This is an
aren ()f current resuar('h.

The PTC [3] also comprisestwo PLLs but, both are
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(a) Dominant (original) specch signal.

(b) CCPLL estimate of dominant signal.
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(c) Sub-dominant (original) speech signal.
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(d) CCPLL estimate of sub-dominant signal.

Figure 3: Performance of CCPLL estimator on FM voice
signals, with frequency deviations of 12kHz and 24kHz.

used to capture and lock onto the dominant signal, i.e,
the first PLL captures the dominant while the second
further smoothens the dominant phase estimate as well
as inverts its polarity (sign) so that it can be subtracted
from the IF input thereby recovering the sub-dominant.

The PTC provides an interesting alternative to the CC-
PLL in that it reduces the complicated nonlinear dynam-
ics inherent in the CCPLL. However, a key limitation is
that amplitude adjustment is required to obtain optimal
dominant signal cancellation at the IF. This is typically
performed manualy which is a clear limitation in opera-
tional scenarios — especialy in an amplitude-fading en-
vironment.

4n example showing PTC performance, when the am-
plitudes of the co-channel signals are presumed known, is
presented in Figure 4 for a very short (50 msec) simulated
segment. In this example two synthesized voice signals
(approximately 3 kHz bandwidth) are FM-modulated and
linearly combined using the following parameters from
Equation (1): A; =1, .4,= 0.5, k; = 2x(70kHz), k2 =
2w (14kHz), w, = 2w(435kHz), and w» = 2x(450kHz).
Thus, the sub-dominant IF bandwidth is considerably
smaller than the dominant IF bandwidth (approximately
25% of th,dominant bandwidth), and th,IF carrier fe-
guencies are chosen differently. So athough there is till
significant spectral overlap between the two signas, this
example is not as stressing as the previous examples (Fig-
ures 2 and 3).

Both the original and PTC-reconstructed estimates
{demodulated by the PLLs) for the dominant and sub-
dominant synt hesized voice waveforms are displayed. As
can be scenthere is virtually perfect agreement between
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(a) Dominant (original) speech signal.

(b) PTC estimate of dominant signal.
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(c) Sub-dominant (original) speech signal.
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(d) PTC edtimate of sub-dominant signal.

Figure 4: PTC performance on FM voice signals.

the originals and their estimates. Additional simulation
experiments with comparable co-channel signal IF band-
widths reveal that the PTC remains very effective in
signal separation under the assumption of constant and
known signal amplitudes. The next step in our research
is to incorporate some form of dominant amplitude esti-
mation into the PTC structure.

MAXIMUM LIKELIHOOD SEPARATION

In the case of no interference (A, = O in Equation (1)),
Cahn [1] derived an approximation

#(t) = A; cos(wyt + 61(t))

of r(t) by minimizing [||#(t)— r(t)|?d¢t subject to the
constraint that within successive time intervals of dura-
tion At,8"(t) is a constant and equal to either —C or C.
That is, the second derivative of the phase is quantized
and used to derive §(t), which in turn is used to determine
F(t). Achieving the closest approximation of r(t) requires
the proper estimation (quantization) of ”(t). Since 6(t)
depends not only on 6"(t) but aso on 6"(s),s<t, the
estimator needs to contain memory. For example. each
state of a 16-state trellis corresponds to a quantized value
(£C) of #"(t),8"(t - At),8"(¢t - 2At), and 6"(t - 3A¢),
where At is the sampling period.

The Viterbi algorithm chooses one of two values for
§"(¢t)in precisely the same way that a maximum likeli-
hood sequence  estimator chooses between demodul ated
bits ) or 1. Thus, this is a maximum likelihood estimate
of r(#), provided the constraint 6”(¢) = £C is an accurate

ofte,



Weextend Cahn'sidea to the caseof A #0by jointly
estitnating #¢ (¢) and 83(¢). That is, r(t) is estimated by

(1) = A, cos(wit + 6,(8)) + A cos(wat + 02(8)),
2

andmaxitnum likelihood estimation is performed as be-
fore. The new trellis size for joint estimation is the square
of Cahn's trellis size. However, the increase in computing
power since Cahn's 1974 paper has allowed us to simu-
late three bits of memory for each signal (64 states) with
excellent results.

The algorithm is implemented in a discrete environ-
ment. We define the discrete versions of the functions in
the usual way, i.e, r[n] = r(nAt), 8[n] = §(nAt), etc. To
determine f[n], the following update equations are used,
for ¢t = 1,2

fn] =fn-1 + 8/njAt
filn] = biln — 1]+ @/[n]At + 0/ [n)(A8)?/2,

and 7[n] is determined from Equation (2).

Because of the quite general modeling of the received
waveform, this technique is potentially applicable to a
wide class of CCI problems, including both analog signals
(FM, PM) and digital signals (FSK, MSK, PSK, QAM,
etc.)— indeed, -any signa which can be written in the
form of Equation (I). The Viterbi algorithm merely at-
tempts to approximate the received signal by the sum of
two waveforms; it requires no knowledge of the modula-
tion or timing of the waveforms. Incorporation of this
knowledge alows improved performance for specific ap-
plications such as BPSK/BPSK interference, which will
be discussed in the following section.

Figure 5 indicates the performance of the joint Viterbi
algorithm on co-channel FM voice signals. The modu-
lating signals are synthesized voice, and the parameters
chosen are identical to those used in Figure 2. That is,
the subdominant signal power is 6dB below the dominant
signal power, the frequency deviation is 12kHz for each
signal, and there is no carrier offset for either signd, i.e,
we assume the carrier has already been removed. The
received signal was again sampled at 131kHz. As can
be seen, nearly all features of each signal are recovered
and separated into the dominant and subdominant sig-
nals, with virtually no signal switching occurring. This is
especially significant in view of the fact that the modulat-
ing signals are datistically identical, and equal frequency
deviations are used. When real voice signals are used,
both signals are easily intelligible, with the dominant sig-
nalsutfering amost no degradation in sound quality. The
quality Of the subdominantsignal IS somewhat degraded.

Figure 6 indicates the performance of the joint Viterbi
algorithin on BFSK co-channel interfering signals. The

modulating signals are determined from independent,

el SR

(a) Dominant (original) speech signal.

(b) Joint Viterbi estimate of dominant signal.
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(c) Sub-dominant (original) speech signal.

(d) Joint Viterbi estimate of sub-dominant signal,

Figure 5: Performance of joint Viterbi estimator on CCI
FM voice signals.
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Figure 6: Joint Viterbi estimation of CCI BFSK signals.

uniformly distributed bit streams. each at a baud rate of
10,000 bits per second. A rectangular pulse shape is used,
and the interfering signals were offset by 1/4 bit. The
parameters used in Equation (1) are 4; =1, 42 = 05,
ky = k» = 2x(5kHz), and w; = ws = O. The received
signal was sampled at 40kHz, i.e, there were 4 samples
per bit. As can be seen, the raw output of the Viterbi
algorith recovers much of the information of the origi-
nal signals: when a moving average and hard limiter are
applied the original and estimated signals match amost
perfectly.

Inpractice. the recerver does nothave a priori knowl-
edge of A and . 4,, and these quantities must also be
estimnated atthe receiver. Wensed the LMS algorithm
to adapt ively est imate .4  and 2. To improve perfor-
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Figure 7. Amplitude estimates for two statisticaly iden-
tica FM voice waveforms. The true amplitudes were con-

stant, as shown.

mance, the estimates were updated in per-survivor pro-
cessing (PSP) fashion, i.e., separate estimates were stored
at each state of the trellis, instead of one estimate at each
time step [4]. We found that the estimates accurately
track the true values, as shown in Figure 7. (In this case,
the estimate itself is quite good but can be improved fur-
ther by applying a moving average to the estimate.) As a
result, there was virtually no difference in the quality of
the 7(¢t) estimate when working with known amplitudes
or estimated amplitudes. This method also tracks ampli-
tudes which vary slowly in time.

It is clear how this joint estimator may be extended
to more than two interfering signals with the addition
of more trellis states. Since the trellis size grows expo-
nentially in the number of interfering signals, there is a
practical limit to the model, however.

M AXxIMUM LIKELIHOOD DEMODULATION OF
BPSK SiGNALS IN THE PRESENCE OF
M uLTIPATH AND Co- CHANNEL
INTERFERENCE

Here we briefly discuss the application of ML-based
methods to the demodulation of BPSK signals in the
presence of multipath and co-channel BPSK interference.
In particular, we consider further the joint trellis algo-
rithm originaly presented in [5] as it applies to co-channel
BPSK demodulation and channel estimation in the pres-
ence of static and fading mulitipath. This algorithm rep-
resents a significant departure from the joint Viterbi algo-
rithm presented above inthat it estimates the data sym-
bols directly as opposed to the (continuous-time) phase
waveforms. The underlyving svstem assumed here IS mod-
eled as a baud-space d, or T-spaced, baseband digitalcom-
municitionsyst em, i.€., the BPSK data symbols for both
the desired signal and interferer are transmitted ina T-
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Figure 9: Static channel bit error rate results for both a
joint and single trellis demodulation algorithm.

spaced data sequence. The corresponding envelope of the
received signa is formed by convolving both desired and
interference BPSK waveforms with generally different T-
spaced channel impulse responses (CIRs) and then lin-
early combining the convolved waveforms. It is assumed
(at least initidly in our studies) that no additive noise is
present and that the received desired signal and interferer
are synchronous and that perfect symbol timing is avail-
able. Performance metrics are the bit error rate (BER) of
the desired signal and the received signa-to-interference
power ratio (SIR).

Two simulation examples are considered here. The first
corresponds to a static multipath environment wherein
both the desired and interference multipath channels are
modeled by a T-spaced CIR with two equal non-zero taps.
The tap value for the desired multipath channel is unity
whereas the corresponding value for the interference chan-
nel is varied to achieve different values of SIR. Plots of
BER versus SIR are presented in Figure 8 corresponding
to both a joint trellis algorithm (with 2 states allocated
each to the desired signal and interferer for a total of
9x 2 = 4 states) and a single trellis algorithm (modeling
only the desired signal with a total of 2 states). Both
algorithms are initialized with a single (2 state) trellis
which is trained using a known, desired signal sequence.
The purpose of this training interval is to obtain an es-
timate of the desired multipath taps. Then, in the case
of the joint trellis algorithm, the trellis is expanded to
4 dtates after the desired signal training seguence in or-
der toestimate the interference multipath channel (in the
blind) andin the process demodulate the desired BPSK
signal.

As is scen from Figure 8. the joint trellis algorithm
providesaB ER < 3% atall SIRS between {and 10 dB.
However. once the SIR exceeds 7 dB, the single trellis
ontperforms the joint trellis and so it is better to dis-
card the states allocated o the interferer once its power
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Figure 9: Fading channel bit error rate results for both a
joint and single trellis demodulation algorithm,

falls below a certain (threshold) level. This behavior is a
consequence of the initialization process described above,
i.e.,, once the interference power becomes too small the
resulting estimate of the interference multipath channel
(derived blindly by the joint trellis) is too noisy to yield
good demodulation of the desired signal and hence the
single trellis algorithm provides the best performance.

Similar results are obtained in a simulated slow
Rayleigh fading multipath environment wherein both the
desired signa and interference channels are modeled by
independent, three tap (T-spaced) channels. Each tap is
fading independently with the same average power. The
average tap power is unity for the desired signal channel
and is varied for the interference channel to achieve dif-
ferent values of average SI R. Plotsof BER versus SI R are
presented in Figure 9 corresponding to both a joint trel-
lis agorithm (with 4 states allocated each to the desired
signa and interferer for a total of 4 x 4 = 16 states) and a
single trellis agorithm (modeling only the desired signa
with a total of 4 states). Both algorithms are initialized
as described above (but using 4 states per co-channel sig-
nal instead of 2 states). Again it is seen that the single
trellis algorithm outperforms the joint trellis when the
SIR exceeds a certain level (12dB in this case).

CONCLUSIONS

The CCPLL isextremely effective at separating an FM
voice signal from an unmodulated carrier signal. but it
suffers from occasional “signal switching”’ if the subdom-
inant signal has modulation parametersvery similar to
those of the dominant, signal. The PTC aso separates
FMvoice signals very well for the cases tested, but in
its presentstate, it is of limited priw ticid utility bec anse
a priori knowledge or a miwnual est, imare of the domi-
nant signal amplitnde is vequired. Two versions of o joint
Viterbi algorichim were preseated. The tiest 1S based on
Cahu's approach {1] and can be applied to a wide variety

of anidog and digital signals.Results with this algorithm
using a G4-state trellis revealed very good demodulation
of digit .l BFSK signals and turthermore yield co-channel
FM voice separation without the “signal switching” asso-
ciated with the CCPLL. The second type of joint Viterbi
algorithm considered [5] yields direct data symbol esti-
mates in multipath environment, s. The application of this
algorithm to both static and fading multipath channels
reveals that once the interference power falls below a cer-
tain threshold level, it is better to discard the joint trellis
architecture and just model the desired signal states.
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